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Name __________________________________    Date _________ 

Algebra 2H Unit 10:  Logarithmic Functions Notes 

 

Introduction to Logarithms and Their Graphs 

 

Exponential functions are of such importance to mathematics that their inverses, functions that “reverse” their 

action, are important themselves. These functions, known as logarithms, will be introduced in this lesson. 

Example 1 The function 𝑓(𝑥) = 2𝑥 is shown graphed on the axes below along with its table of values. 

 

 

 

 

 

 

(a) Is the function one-to-one? Explain. 

 

 

 

 

 

(b) Based on your answer from part a, what must be true  

about the inverse of this function? 

 

 

 

 

 

 

(c) Create a table of values below for the inverse of 𝑓(𝑥) = 2𝑥and  

plot this graph on the axes given.  HINT:  Switch the x and y. 

 

 

 

 

 

 

 

(d) What would be the first step to find an equation for this inverse algebraically? Write this step down and 

then stop. 
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Defining Logarithmic Functions – The function 𝑦 = 𝑙𝑜𝑔𝑏 𝑥  is the name we give the inverse of 𝑦 = 𝑏𝑥.  For 

example, 𝑦 = 𝑙𝑜𝑔2 𝑥 is the inverse of 𝑦 = 2𝑥.  Based on Example 1d, we can write an equivalent exponential 

equation for each logarithm as follows: 

 

𝑦 = 𝑙𝑜𝑔𝑏 𝑥 is the same as 𝑏𝑦 = 𝑥   

(b is the base, y is the exponent, x is the answer) 

 

Based on this, we see that a logarithm gives as its output (y-value) the exponent we must raise b to in order to 

produce its input (x-value). 

 

Example 2 Evaluate the following logarithms. If needed, write an equivalent exponential equation. Do as 

many as possible without the use of your calculator, then use your calculator to verify. The first 

one has been done for you. 

 

(a) 𝑙𝑜𝑔2 8 =  3      (b) 𝑙𝑜𝑔4 16 =    (c) 𝑙𝑜𝑔6 1 = 

 

Because:  2    =  8   So,  23 = 8 

 

(d) 𝑙𝑜𝑔6
1

6
=    (e) 𝑙𝑜𝑔6

1

36
=    (f) 𝑙𝑜𝑔6 √6 = 

 

 

 

 

Example 3 The log form of 𝑦 = 𝑎𝑥 is 

(1)  𝑦 = 𝑙𝑜𝑔𝑎 𝑥  (3)  𝑎 = 𝑙𝑜𝑔𝑥 𝑦 

 (2)  𝑥 = 𝑙𝑜𝑔𝑎 𝑦  (4)  𝑥 = 𝑙𝑜𝑔𝑦 𝑎 

 

Example 4  Which of the following is equivalent to 𝑦 = 𝑙𝑜𝑔4 𝑥 ? 
 

(1) 𝑦 = 𝑥4    (3) 𝑥 = 4𝑦 

(2) 𝑥 = 𝑦4    (4) 𝑦 = 4𝑥 

 

 

Example 5  Which of the following represents the inverse of 𝑦 = 𝑙𝑜𝑔4 𝑥 ? 
 

(1) 𝑦 = 𝑥4    (3) 𝑥 = 4𝑦 

(2) 𝑥 = 𝑦4    (4) 𝑦 = 4𝑥 

 

Calculator Use and Logarithms – Most non-graphing calculators only have two logarithms that they can 

evaluate directly.  One of them, 𝑙𝑜𝑔10 𝑥, is so common that it is actually called the common log and typically is 

written without the base 10. 

𝑙𝑜𝑔 𝑥 = 𝑙𝑜𝑔10 𝑥 (The Common Log) 
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Example 6 Evaluate each of the following without using your calculator. 

 

(a) 𝑙𝑜𝑔 1 00 =    (b) 𝑙𝑜𝑔
1

1000
=    (c) 𝑙𝑜𝑔 1 0 = 

 

 

Example 7 Consider the logarithmic function 𝑦 = 𝑙𝑜𝑔3 𝑥 and its inverse 𝑦 = 3𝑥. 

 

(a) Construct a table of values for 𝑦 = 3𝑥 and then use this to construct a table of values for the function 

𝑦 = 𝑙𝑜𝑔3 𝑥.  Graph and label both functions. 

 

 

 

 

 

 

 

 

 

(b) State the domain and range of 𝑦 = 3𝑥 and 𝑦 = 𝑙𝑜𝑔3 𝑥.  

 State your answers in set-builder notation. 

 

  𝑦 = 3𝑥    𝑦 = 𝑙𝑜𝑔3 𝑥 
 

 Domain:   Domain: 

 

Range:    Range: 

 

 

(c) Identify the type of asymptote and its equation for 𝑦 = 3𝑥 and 𝑦 = 𝑙𝑜𝑔3 𝑥. 

 

𝑦 = 3𝑥      𝑦 = 𝑙𝑜𝑔3 𝑥 
 

 

 

 

Notice how switching the x and y to create the inverse also switches the domain and range and the 

asymptotes. 

 

Example 8 Which of the following equations describes the graph shown below? Show or explain how you 

made your choice.   

 

(1) 𝑦 = 𝑙𝑜𝑔2( 𝑥 + 3) − 1 

(2) 𝑦 = 𝑙𝑜𝑔2( 𝑥 − 3) − 1 

(3) 𝑦 = 𝑙𝑜𝑔2( 𝑥 + 3) + 1 

(4) 𝑦 = 𝑙𝑜𝑔2( 𝑥 − 3) + 1 
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Example 9 The fact that finding the logarithm of a non-positive number (negative or zero) is not possible in  

the real number system allows us to find the domains of a variety of logarithmic functions. 

 

(a) Determine the domain of the function graphed in Example 8. 

 

 

 

 

 

(b) Determine the domain of the function 𝑦 = 𝑙𝑜𝑔2( 3𝑥 − 4).  HINT:  Set 3𝑥 − 4 > 0 and solve.  This 

inequality will guarantee the domain is not 0 and stays positive. 
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Logarithm Laws 

 

Logarithms have properties, just as exponents do, that are important to learn because they allow us to solve a 

variety of problems where logarithms are involved. Keep in mind that since logarithms give exponents, the 

laws that govern them should be similar to those that govern exponents. Below is a summary of these laws. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 10  Which of the following is equal to 𝑙𝑜𝑔3( 9𝑥)? 

 

(1) 𝑙𝑜𝑔3 2 + 𝑙𝑜𝑔3 𝑥 (3) 2 + 𝑙𝑜𝑔3 𝑥 

(2) 2 𝑙𝑜𝑔3 𝑥  (4) 𝑙𝑜𝑔3 2 + 𝑥 

 

 

 

 

Example 11 The expression 𝑙𝑜𝑔 (
𝑥2

1000
) can be written in equivalent form as 

 

(1) 2 𝑙𝑜𝑔 𝑥 − 3  (3) 2 𝑙𝑜𝑔 𝑥 − 6 

(2) 𝑙𝑜𝑔 2 𝑥 − 3  (4) 𝑙𝑜𝑔 2 𝑥 − 6 

 

 

 

 

 

Example 12 If a = log3 and b = log 2 then which of the following correctly expresses the value of log12 in 

terms of a and b? 

 

(1) 𝑎2 + 𝑏  (3) 2𝑎 + 𝑏 

(2) 𝑎 + 𝑏2  (4) 𝑎 + 2𝑏 

 

 

 

Example 13 Which of the following is equivalent to 𝑙𝑜𝑔2 (
√𝑥

𝑦5
)? 

 

(1) √𝑙𝑜𝑔2 𝑥 − 5 𝑙𝑜𝑔2 𝑦  (3) 
1

2
𝑙𝑜𝑔2 𝑥 − 5 𝑙𝑜𝑔2 𝑦 

(2) 2 𝑙𝑜𝑔2 𝑥 + 5 𝑙𝑜𝑔2 𝑦  (4) 2 𝑙𝑜𝑔2 𝑥 − 5 𝑙𝑜𝑔2 𝑦 
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Example 14 The value of 𝑙𝑜𝑔3 (
√5

27
) is equal to  

 

(1) 
𝑙𝑜𝑔3 5−6

2
  (3) 2 𝑙𝑜𝑔3 5 + 3 

(2) 
𝑙𝑜𝑔3 5−3

2
  (4) 2 𝑙𝑜𝑔3 5 − 3 

 

 

 

 

Example 15 If 𝑓(𝑥) = 𝑙𝑜𝑔( 𝑥) and 𝑔(𝑥) = 100𝑥3 then 𝑓(𝑔(𝑥)) = 

 

(1) 100 𝑙𝑜𝑔 𝑥  (3) 6 + 𝑙𝑜𝑔 𝑥 

(2) 300 𝑙𝑜𝑔 𝑥  (4) 2 + 3 𝑙𝑜𝑔 𝑥 

 

 

 

 

Example 16 The logarithmic expression 𝑙𝑜𝑔2 √32𝑥7 can be written as 

 

(1) √𝑙𝑜𝑔2 35𝑥 (3) √5 + 7 𝑙𝑜𝑔2 𝑥 

 

(2) 
5+7 𝑙𝑜𝑔2 𝑥

2
  (4) 

35+𝑙𝑜𝑔2 𝑥

2
 

 

 

 

 

Example 17 If 𝑙𝑜𝑔 7 = 𝑘 then 𝑙𝑜𝑔( 4900) can be written in terms of k as  

 

(1) 2(k + 1)  (3) 2(k – 3) 

(2) 2k – 1  (4) 2k + 1 
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Solving Exponential Equations Using Logarithms 

 

In the previous unit, we used the Method of Common Bases to solve exponential equations. This technique is 

quite limited, however, because it requires the two sides of the equation to be expressed using the same base. A 

more general method utilizes our calculators and the third logarithm law: 

 

The Third Log Law (The Power Law) 

 

𝑙𝑜𝑔𝑏( 𝑎
𝑥) = 𝑥 𝑙𝑜𝑔𝑏 𝑎 

 

Example 18 Solve 4𝑥 = 8 using (a) common bases and (b) the logarithm law shown above. 

 

(a) Method of Common Bases:  4𝑥 = 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Logarithm Approach:  4𝑥 = 8    Step 1: Take the common log of both sides. 

        Step 2: Use the Power Log Law to simplify   

the expression 

Step 3: Solve for x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The beauty of this logarithm law is that it removes the variable from the exponent. This law, in combination 

with the logarithm base 10, the common log, allows us to solve almost any exponential equation using 

calculator technology. 
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Example 19 Using logs, solve each of the following equations for the value of x. Round your answers to the 

nearest hundredth.   

 

These equations can become more complicated, but each and every time we will use the power 

logarithm law to transform an exponential equation into one that is more familiar (linear only for 

now). 

 

(a) 5𝑥 = 18    (b) 4𝑥 = 100    (c) 2𝑥 = 1560 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) 6𝑥+3 = 50      (e) (1.03)
1

2
𝑥−5 = 2 
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Many modern calculators (including the nSpires) can find a logarithm of any base. Some still only have the 

common log (base 10) and another that we will soon see. But, we can still express our answers in terms of 

logarithms and evaluate them. 

 

Example 20 Find the solution to each of the following exponential equations in terms of a logarithm and then 

evaluate your expression to the nearest hundredth.  HINT:  Isolate the exponential expression 

first and then rewrite your exponential equation into log form.   

Remember: 𝑦 = 𝑏𝑥 is the same as 𝑥 = 𝑙𝑜𝑔𝑏 𝑦 

 

 

(a) 4(2)𝑥 − 3 = 17     
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 17(5)
𝑥

3 = 4 
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Now that we are familiar with this method, we can revisit some of our exponential models from the last unit. 

Recall that for an exponential function that is increasing or decreasing: 

If quantity Q is known to increase/decrease by a fixed percentage p, in decimal form, then Q can be modeled by 

 

𝑄(𝑡) = 𝑄0(1 ± 𝑝)𝑡 
 

where 𝑄0 represents the amount of Q present at t = 0 (initial amount or value) and t represents time. 

 

Example 21 A biologist is modeling the population of bats on a tropical island. When he first starts observing 

them, there are 104 bats. The biologist believes that the bat population is growing at a rate of 3% 

per year. 

 

(a) Write an equation for the number of bats, B(t ), as a function of the number of years, t, since the 

biologist started observing them. 

 

 

 

 

(b) Using your equation from part (a), algebraically (with logs) determine the number of years it will take 

for the bat population to reach 200. Round your answer to the nearest year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 22 A stock has been declining in price at a steady pace of 5% per week. If the stock started at a price 

of $22.50 per share, determine algebraically the number of weeks it will take for the price to 

reach $10.00. Round your answer to the nearest week. 
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The Number e and the Natural Logarithm 

 

There are many numbers in mathematics that are more important than others because they find so many uses in 

either mathematics or science. Good examples of important numbers are 0, 1, i, and π. In this lesson you will 

be introduced to an important number given the letter e for its “inventor” Leonhard Euler (1707-1783). This 

number plays a crucial role in Calculus and more generally in modeling exponential phenomena. 

 

 

 

 

 

Example 23 Which of the graphs below shows 𝑦 = 𝑒𝑥? Explain your choice. Check on your calculator. 

 

 

 

 

 

 

 

 

 

 

 

  

Since e is essentially like Pi (has a numerical equivalent), then it will act like a base > 1. Just like last unit. 

 

 

Very often e is involved in exponential modeling of both increasing and decreasing quantities.  

 

Example 24 A population of llamas on a tropical island can be modeled by the equation 𝑃(𝑡) = 500𝑒0.035𝑡  , 

where t represents the number of years since the llamas were first introduced to the island. 

 

(a) How many llamas were initially introduced at t = 0 ? Show the calculation that leads to your 

answer. 

  P(t) = 500e0.035(0) = 500 (e0) = 500 (1) = 500  our starting # of llamas 

 

 

(b) Algebraically determine the number of years for the population to reach 600. Round your 

answer to the nearest tenth of a year. 

 

   500e0.035(t) = 600  Now try to isolate t; divide both sides by 500 

    

   e0.035(t) = 6/5   Take the natural log (ln) of both sides  

 

   ln (e0.035(t)) = ln (6/5)  Use the power law to bring exponent down 

 

   0.035t (ln e) = ln (6/5)  Since ln e = log e e, then ln e = 1 

    

   0.035t = ln (6/5)  Now use a calc and divide both sides by 0.035; t = 5.2 yrs 
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Because of the importance of 𝑦 = 𝑒𝑥 its inverse, known as the natural logarithm, is also important. 

 

 

 

 

 

 

The natural logarithm, like all logarithms, gives an exponent as its output. In fact, it gives the power that we 

must raise e to in order to get the input. 

 

Example 25 Without the use of your calculator, determine the values of each of the following.  Afterwards 

use your calculator to check. 

 

(a) 𝑙𝑛( 𝑒) = 1      (c) 𝑙𝑛( 𝑒5) = 5 (ln e) = 5 (1) = 5  

 

 

 

 

 

 

(b) 𝑙𝑛( 1) = 0      (d) 𝑙𝑛( √𝑒) = 1/2 

 

 

 

 

 

 

 

 

The natural logarithm follows the three basic logarithm laws that all logarithms follow.   

       

       𝑙𝑛( 𝑥𝑦) = 𝑙𝑛 𝑥 + 𝑙𝑛 𝑦 

𝑙𝑛 (
𝑥

𝑦
) = 𝑙𝑛 𝑥 − 𝑙𝑛 𝑦 

𝑙𝑛( 𝑥𝑦) = 𝑦 𝑙𝑛 𝑥 
 

Example 26 Which of the following is equivalent to 𝑙𝑛 (
𝑥3

𝑒2
)?  = ln (x3) – ln (e2) 

(1) 𝑙𝑛 𝑥 + 6  (3) 3 𝑙𝑛 𝑥 − 6         = 3 (ln x) – 2 (ln e) 

(2) 3 𝑙𝑛 𝑥 − 2  (4) 𝑙𝑛 𝑥 − 9         = 3 ln (x) – 2     since ln e = 1 
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Example 27 A hot liquid is cooling in a room whose temperature is constant. Its temperature can be modeled 

using the exponential function shown below. The temperature, T, is in degrees Fahrenheit and is 

a function of the number of minutes, m, it has been cooling. 

 

  𝑇(𝑚) = 101𝑒−0.03𝑚 + 67 
 

(a) What was the initial temperature of the water at m = 0 . Do without using your calculator. 

T(0) = 101𝑒−0.03(0) + 67 = 101 e0 + 67 = 101 + 67 = 168 

 

 

(b) How do you interpret the statement that T (60) = 83.7 ? 

After 60 minutes, the temp of the liquid has dropped to 83.7 degrees 

 

 

 

(c) Using the natural logarithm, determine algebraically when the temperature of the liquid 

will reach 100 ∘F. Show the steps in your solution. Round to the nearest tenth of a minute.  HINT: Solve 

the equation as we have been but use the natural log instead of the common log. 

 

    101 e-0.03t + 67 = 100  Create an equation to solve for t 

 

    101 e-0.03t = 33   Subtract 67 from both sides 

 

    e-0.03t = 33/101   Divide by 101 (leave the fraction) 

 

    ln (e-0.03t) = ln (33/101) Take natural log of both sides 

 

    -0.03t (ln e) = ln (33/101) Use power rule to bring exponent down 

 

    -0.03t  = ln (33/101)  Drop the ln (e) since it’s equal to 1 

 

    t = 37 minutes   Use calc to solve for t 

 

Please realize that I am doing all of this with a scientific calculator (actually the one on my iPhone), so not 

having a graphing calculator should not be a deterrent to working. 

 

(d) On average, how many degrees are lost per minute over the interval 10 ≤ m ≤ 30? Round to 

the nearest tenth of a degree.  HINT:  You are finding the average rate of change – slope. 

 

  Use your calculator to plug in 10 and 30 into your original equation. Then use average rate of 

change formula to solve. 

 

  T (10) = 141.82 degrees  y2 – y1 = 108.06 – 141.82 = -33.76  =  1.7 degrees/minute 

  T (30) = 108.06 degrees  x2 – x1   30 – 10  20 
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Exact Answers 

 

There are times when an exact answer is warranted with logarithms. In this case, we will need to manipulate the 

equation to solve for the specified variable. Let’s try one. 

 

Example 28  10 =
40

1+7𝑒−0.25𝑡
 

 

 

THIS IS ONE OF OUR EXTRA TOPICS THAT WE WILL SKIP SINCE 

 

TIME WILL BE OF THE ESSENCE IF WE RETURN. 

 

 
 

 

Compound Interest 

 

In the worlds of investment and debt, interest is added onto a principal in what is known as compound interest. 

The percent rate is typically given on a yearly basis but could be applied more than once a year. This is known 

as the compounding frequency. Let's look at a typical problem to understand how the compounding frequency 

changes how interest is applied. 

 

Example 29 A person invests $500 in an account that earns a nominal yearly interest rate of 4%. 

 

(a) How much would this investment be worth in 10 years if the compounding frequency was once per 

year? Show the calculation you use. 

V(t) = 500 (1.04)10 = 740.12 

 

 

(b) If, on the other hand, the interest was applied four times per year (known as quarterly compounding), 

why would it not make sense to multiply by 1.04 each quarter? 

This would give us 4% per quarter, which isn’t realistic! 

 

 

 

(c) If you were told that an investment earned 4% per year, how much would you assume was earned per 

quarter? Why? 

We would assume 1% applied four times over the year 

 

 

(d) Using your answer from part (c), calculate how much the investment would be worth after 10 years of 

quarterly compounding? Show your calculation. 

V(t) = 500 (1.01)40  This is us applying 1% forty times (4x per year) 

V(t) = 744.43   It is slightly higher since we applied the interest more often 
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So, the pattern is straightforward. For a shorter compounding period, we get to apply the interest more 

often, but at a lower rate.  Let’s formalize this pattern into a classic formula from economics for the amount, A, 

the investment is worth after t-years: 

 

𝐴(𝑡) = 𝑃 (1 +
𝑟

𝑛
)
𝑛𝑡

  P = amount initially invested 

r = nominal yearly rate 

 

n = number of compounds per year 

 

 

 

Example 30 The rate in the previous formula was referred to as nominal (in name only). It's known as this, 

because you effectively earn more than this rate if the compounding period is more than once per 

year. Because of this, bankers refer to the effective rate, or the rate you would receive if 

compounded just once per year. Let's investigate this. 

 

An investment with a nominal rate of 5% is compounded at different frequencies. Give the 

effective yearly rate, accurate to two decimal places, for each of the following compounding 

frequencies. Show your calculation. 

 

 

(a) Quarterly      (b) Monthly      (c) Daily 

 

 (1 + 
.05

4
 )4 = 1.0509   (1 + 

.05

12
 )12 = 1.0511    (1 + 

.05

365
 )365 = 1.0513 

 

 So about 5.10%   So about 5.11%    So about 5.13% 

 

 Notice how each time we changed the compounding, it raised the overall percentage slightly? This is  

 how interest works. The more time it is compounded, there is a slight increase in the overall rate. 

 

 

 

 

 

 

 

Example 31 How much would $1000 invested at a nominal 2% yearly rate, compounded monthly, be worth 

in 20 years? Show the calculations that lead to your answer. 

 

(1) $1485.95   (3) $1033.87  1000 (1 + 
.02

12
 )12*20 = 1491.3280 

 

(2) $1491.33   (4) $1045.32 
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We could compound at smaller and smaller frequency intervals, eventually compounding all moments of time. 

In our formula, we would be letting n approach infinity. This gives rise to continuous compounding and the 

use of the natural base e in the famous continuous compound interest formula:  

 

For an initial principal, P, compounded continuously at a nominal yearly rate of r, the investment would be 

worth an amount A given by:    

 

𝐴(𝑡) = 𝑃𝑒𝑟𝑡 
 

 

Example 32  A person invests $350 in a bank account that promises a nominal rate of 2% continuously 

compounded. 

 

(a) Write an equation for the amount this investment would be worth after t-years. 

 

A(t) = 350 e .02t 

 

 

(b) How much would the investment be worth after 20 years? 

 

A(20) = 350 (e .02*20) = 522.14 

 

 

 

 

 

(c) Algebraically determine the time it will take for the investment to reach $400. Round to the nearest 

tenth of a year. 

 

350 e .02t = 400  Set original equation equal to the target amount of $400 

 

e .02t = 8/7   Divide both sides by 350 … reduces to 8/7  

 

ln (e .02t) = ln (8/7)  Take the natural log of both sides (since we’re using e) 

 

.02t (ln e) = ln (8/7)  Use power rule to bring down exponent 

 

.02t = ln (8/7)   Cancel ln e since it’s equal to zero; solve for t 

 

t = 6.7 years 

 

 

(d) What is the effective annual rate for this investment? Round to the nearest hundredth of a percent. 

 

e .02 = 1.0202 = 2.02%  This is the effective annual rate (t = 1) 


